Воздействие лазерного излучения на металлы при резке характеризуется общими положениями, связанными с поглощением и отражением излучения, распространением поглощенной энергии по объему материала за счет теплопроводности и др., а также специфическими для процесса резки особенностями.
На участке воздействия излучения металл нагревается до первой температуры разрушения — плавления. При дальнейшем поглощении излучения металл расплавляется и от участка воздействия излучения в объем материала начинает перемещаться фазовая граница плавления. Наряду с этим энергетическое воздействие лазерного излучения приводит к последующему повышению температуры, достигающей второй температуры разрушения — кипения, когда имеет место активное испарение. Скорость испарения экспоненциально зависит от температуры и максимального своего значения достигает при станционарной температуре испарения, когда скорости фазовых границ плавления и испарения одинаковы.
В зависимости от плотности мощности лазерного излучения количество расплавленного металла, стационарная температура, скорость плавления и испарения будут различными. Указанные параметры характеризуют процесс разрушения, и, следовательно, изменяя плотность мощности и время воздействия лазерного излучения на металлы, можно управлять этим процессом.
Значительное влияние на интенсивность процессов нагрева и разрушения также оказывает поглощательная способность металлов, зависящая от температуры поверхности, длины волны, поляризации и угла падения излучения на обрабатываемую поверхность. Поглощенная энергия лазерного излучения находится в зависимости от параметров парогазовой плазмы, возникающей как при непрерывном, так и при импульсном и импульсно-периодическом режимах лазерного излучения в процессе резки.
Таким образом, при воздействии лазерного излучения на металлы возможны два механизма резки — плавление и испарение. Поверхность разрушения, так называемый канал реза, существует по всей толщине в процессе резки и перемещается со средней скоростью в направлении резки.
Практическое использование разрушения металлов посредством механизма испарения затруднено в связи с достаточно высокими удельными энергозатратами.
Заметное снижение энергозатрат достигается использованием вспомогательного газа для удаления продуктов разрушения металлов из канала реза. Перемещение жидкой ванны расплава осуществляется в основном по толщине материала, т. е. вдоль канала реза с помощью динамического воздействия газа, превышающего вязкокапиллярную силу.
При газолазерной резке металлов различают стационарный характер разрушения, когда жидкая ванна расплава существует по всей длине канала реза, и нестационарный, характеризуемый периодическим выносом расплавленного металла из зоны обработки.
Стационарный механизм разрушения достигается в том случае, когда скорости плавления металла в направлении реза и удаления расплавленного металла равны в каждом сечении канала. При скоростях газолазерной резки металлов меньше стационарных имеет место нестационарный, т. е. неустановившийся характер разрушения.